United States Patent

US009459839B2

(12) (10) Patent No.: US 9,459,839 B2
Kisynski et al. 45) Date of Patent: Oct. 4, 2016
(54) SYSTEMS AND METHODS TO 5,970,501 A 10/1999 Hunkins et al.
SYNCHRONIZE ARTIFACT RELATIONSHIPS 6,199,198 B1* 3/2001 Graham S?Eﬁflfizq;‘
ACROSS A PLURALITY OF REPOSITORIES 6397.192 Bl 52002 Notani et al. i
. 6,460,051 B1 10/2002 LaRue et al.
(71) Applicant: TaskTop Technologies, Incorporated, 6,505,200 Bl 1/2003 Ims et al.
Vancouver (CA) (Continued)
(72) Inventors: Jacek Kisynski, Vancouver (CA);
Colin Ritchie, Vancouver (CA): FOREIGN PATENT DOCUMENTS
Benjamin Muskalla, Karlsruhe (DE); EP 2160 689 A2 3/2010
Mik Kersten, Vancouver (CA) EP 2 169 552 Al 3/2010
INCORPORATED, Vancouver (CA)
. Selvage-Websphere Business Modeler-2009, located at http://www.
(*) Notice: Subject to any disclaimer, the term of this ibm.com/developerworks/data/library/techarticle/dm-0711selvage/
patent is extended or adjusted under 35 2009, *
(21) Appl. No.: 14/571,113
Primary Examiner — Wei Zhen
(22) Filed: Dec. 15, 2014 Assistant Examiner — Hossain Morshed
(74) Attorney, Agent, or Firm — Seed 1P Law Group
(65) Prior Publication Data PLLC
US 2016/0170715 Al Jun. 16, 2016
bl (57) ABSTRACT
(51) Inmt. CL Systems and methods synchronize artifact relationships
GO6F 9/44 (2006.01) across a plurality of repositories. One example method
GOG6F 17/30 (2006.01) includes mapping a first relationship of a first relationship
(52) US. CL type between a first source artifact in a first repository and
CPC . GO6F 8/20 (2013.01); GOG6F 8/70 (2013.01); a second source artifact to a second relationship of a second
GO6F 17/30312 (2013.01) relationship type between a first target artifact in a second
(58) TField of Classification Search repository and a second target artifact according to a rela-
None tionship mapping provided by a schema mapping guide. One
See application file for complete search history. example system includes a repository synchronizer to syn-
chronize artifact relationship across at least first and second
(56) References Cited repositories. The repository synchronizer can include at least

U.S. PATENT DOCUMENTS

5,301,320 A 4/1994 McAtee et al.
5,706,509 A 1/1998 Man-Hak Tso
5,884,081 A * 3/1999 Burbeck ... GO6F 8/10

707/999.102

one processor. The example system can further include one
or more schema mapping guides that provide one or more
relationship mappings between the first and second reposi-
tories.

26 Claims, 9 Drawing Sheets

08

identify a First Relationship of a First Relationship
Type Belween a Firsi Source Artifact in a First
Fepaository and a Second Source Artifact

'

N ldentify a First Target Artifact in a Second Repository
that Corresponds to First Source Artifact

!

| Determine a Defined Second Relationship Type for a
Second Relationship Between the First Target Artifact
and a Second Targel Artifact

!

Cause the Second Relationship to Maich the
Determined Defined Second Relationship Type

US 9,459,839 B2

Page 2
(56) References Cited 2008/0256038 Al 10/2008 Kimelman et al.
2008/0281863 Al 11/2008 Pospisil et al.
U.S. PATENT DOCUMENTS 2010/0011337 Al 1/2010 Young et al.
2010/0017792 Al 1/2010 Young et al.
7,089,530 B1* 82006 Dardinski GO5B 15/02 2010/0030893 Al 2/2010 Berg et al.
700/83 2010/0145907 Al* 62010 Carbajales HO4L 67/24
7,149,742 BL* 12/2006 GOGF 17/30575 707/610
7,181,739 B1* 2/2007 Harral ..oocovveverevnn, GOG6F 8/61 2010/0145910 Al 6/2010 Zhao et al.
717170 2010/0274785 A1* 10/2010 Procopiuc GOGF 17/30312
7,480,907 Bl 1/2009 Marolia et al. 707/737
7,496,606 B2 2/2009 Hind et al. 2011/0047126 Al 2/2011 Vargas et al.
7,516,167 B2 4/2009 Selman et al. 2011/0078114 Al* 3/2011 Herbeck GOG6F 17/30011
7,555,497 B2* 6/2009 Thompson GO6F 17/30233 707/638
7565381 B2 72000 Oswalt 2013/0091099 Al 4/2013 Novak et al.
7,607,130 B2 10/2009 Singh et al. 2014/0059017 Al* 2/2014 Chaney GO6F 17/30595
7,693,888 B2 4/2010 Urscheler et al. 707/692
7,822,708 B1* 10/2010 Mathew GOG6F 17/30604
. 707/610 OTHER PUBLICATIONS
7,827,565 B2 11/2010 Minium, Jr. et al.
7,917,534 B2* 3/2011 Demiroski GOOF 9/4433 Lainwala-WebSphere relationship service-static-2006, located at
: 0TI ttp:/swww.ibm.com/devel s/websphere/library!/
7,941,449 B2*% 52011 Liu oo, GOG6F 17/30557 ttp://www.1bm.com/developerworks/websphere/library
706/55 techarticles/0604__lainwala/0604__lainwala. html 2006 .*
7,962,448 B2* 6/2011 Creamer G06Q 50/22 Selvage, Integrate WebSphere Business Modeler, located at http://
705/2 www.ibm.com/developerworks/data/library/techarticle/dm-
7,962,891 B2 6/2011 Kimelman et al. 0711selvage/ 2009.*
8,131,672 B2~ 3/2012 Hind et al. Lainwala, WebSphere Process Server, located at http://www.ibm.
8,166,101 B2* 4/2012 Shah GOGF 17/30595 com/developerworks/websphere/library/techarticles/0604__
709/203 fainwala/0604_lainwala html 2006.*
8315976 B2 11/2012° Multer et al. Golbeck et al., “System and Method for Synchronizing States in
8,849,987 B2 9/2014 Berg et al. A . "
9.104.668 B2* 82015 Novak GOG6F 17/30002 ssociated Data Records,” U.S. Appl. No. 13/833,901, filed Mar.
9,104,740 B2* 82015 Herbeck GOGF 17/30289 15: 2013, 14 pages. i _
2002/0059299 Al 5/2002 Spaey Golbe.ck et al.,, “System and Me.:th.od for Synchronizing States in
2004/0148299 Al 7/2004 Teegan et al. Associated Data Records,” Preliminary Amendment filed Apr. 7,
2005/0204367 Al 9/2005 Minium, Jr. et al. 2014, for U.S. Appl. No. 13/833,901, 20 pages.
2006/0241956 Al™* 10/2006 Levy ..ccoovvevveennnne G06Q 10/10 Golbeck et al,, “System and Method for Synchronizing States in
703/6 Associated Data Records,” Office Action mailed Mar. 25, 2015, for
2007/0083813 Al™* 4/2007 Lui .cocovvvvevvecnnne GOG6F 11/3612 U.S. Appl. No. 13/833,901, 21 pages.
715/709 Janzen, “System and Method for Repairing Data Synchronization
2007/0136265 AL* 6/2007 Hunt GOGF 17/30604 [inks,” U.S. Appl. No. 13/834,365, filed Mar. 15, 2013, 16 pages.
%88;;852%5% ﬁ} " 3;588; x\llzeim GOG6F 17/30174 Janzen, “System and Method for Repairing Data Synchronization
B e 709/248 Links,” Preliminary Amendment filed Apr. 7, 2014, for U.S. Appl.
2007/0288854 Al* 12/2007 Koskimies GOGF 9/4443 ~ No. 13/834,365, 22 pages.
715/760 International Search Report, mailed Mar. 24, 2016, for correspond-
2008/0194315 Al 8/2008 Seelig et al. ing International Application No. PCT/US2015/065615, S pages.
2008/0201362 Al* 82008 Multer GOG6F 17/30174
2008/0243935 Al™* 10/2008 Castro GOG6F 11/1458 * cited by examiner

US 9,459,839 B2

Sheet 1 of 9

Oct. 4, 2016

U.S. Patent

| {shoepy|

/u Rousodey

ZzTg]

SUOHONASU||

AJOWIBIN

{£110$$8204

\

4 o0 uswdoisas(] aIBMYyog

["OId

IEED

| ost

S 2°1t

C 28

\ /| Aiousodey

eled

SUOHINNSU]

(51108380014

N

L j00] jusidoeAs(] 8IBMI0S

frowspgl|

C0O0L

asznucisny Buddep suwayos|
{s¥oping Buddeyy suwLyns|. Ot
1pzIuoyouls Aoyisodey| | “8ei
AIOWB|. g
{$)408$82044|, vl
amAs(] ucneziucIouiAs Aoysodey N ZTh
\
TGz
gleq (|
ARt
SUONOIUISLL

{SHOSSBOC

aoina(] Bunndwon Jaspy|

Aicwapy]| 9t

U.S. Patent Oct. 4, 2016 Sheet 2 of 9 US 9,459,839 B2

200
\\
202 - |Artifact
204 . Unigue dentifier
208 Type
HRelationship 1
210 :
212 Relationship n
Additional Attributes
FIG. 2
300 |
00 308
\\ e e 308

304 Repository 1 /

y e

AN Child of _
Artifact 1 Artifact 2

FIG. 3

400

Repository 3

U.S. Patent Oct. 4, 2016 Sheet 3 of 9 US 9,459,839 B2

0o

502
identify a First Relationship of a First Relationship
Type Belween a First Source Artifact in a First
Repository and a Second Source Artifact

504 ¢

identify a First Target Artifact in a Second Repository
that Corresponds to First Source Artifact

506 ¢

Determine a Defined Second Relationship Type for a
Second Relgtionship Between the First Target Artifact
and a Second Targel Artifact

508 ¢

Cause the Second Relationship to Maitch the
Determinaed Defined Second Relationship Type

FIG. §

U.S. Patent

Oct. 4, 2016 Sheet 4 of 9

00

802

Receive Changed Artifact

504

v

— Scan Artifact for Unprocessed Relationship Fields

v

606 <

US 9,459,839 B2

From

(830) of FIG. 6B

oF
(640) of FIG. 6C

Unprocessed Relationship Field Found? >—+

¢Yes

608 <

internal-to-Internal Synchronizalion?

‘Y{-}s

610

Resolve Relationship inte Target Artifact ldentities

v

612
\<

Any Referenced Target! Artifacts Missing? >7
No

‘Yes

Mark Artifact as Pending

v

Missing Referenced Target Artifacts
Required?

‘Yes

To (628) of FIG. 6C

N

616

'

Update Target Field with Relationship

v

Mark Relationship Field as Processed

- 618

- 620

FIG. 6A

To (832) of

EG 80

22) of
68

U.S. Patent Oct. 4, 2016 Sheet 5 of 9 US 9,459,839 B2

From (608) of
FiG. BA

822 i
\< Internal-to-External Synchronization? >7
No

l\fes
624

Resolve Relationship into First Resource Locator

626 l‘

Query First Target Adifact for
Existence of First Resource Locator

648 ¢

Merge First Resource Locator into First Target Artifact
if Not Already Existing

6530 ¢

Mark Relationship Field as Processead

&

To (604) of
FIG. BA

FIG. 6B

U.S. Patent Oct. 4, 2016 Sheet 6 of 9 US 9,459,839 B2

From (606) of
FiG. BA

832 i

Process Non-Relationship Fields

834 ¢

Synchronize Non-Relationship Fields
of First Targel Arifact

!

636
\< is Artifact Marked as Pending? >7
Yes

MNo

From (616) of
FIG. BA

T

838 T

Wait until Referenced Targel Artifact{s) bExist

840 ¢

Ramove Pending Mark from Artifact

&

To {(604) of
FIG. 6A

FIG. 6C

US 9,459,839 B2

Sheet 7 of 9

Oct. 4, 2016

U.S. Patent

g/ 9Oid

/ /

N g ueed by sagged|l
9804) Aoyg desn juswsainbey |l 9204
veor | - || | veor
a0 25 10BILIY 2y 108y zEnd
0s0L N 0204

\ (i) RO
9v0L " B Alnes4 juetussnbay|l 9104
oL | g v oL
Zv0s | L9 108Uy Ly oeguy| | ZhOL

s / N
0r0L v/\/m fioisodey \ v kioysodoy g0

e
S
S .
e ™,
S .

.
.

\ “
004 CE004

V. "Old

AN N
\ \
) (N LY eued
950~ \ AI01S JOSH wewannbay|| 9004
Pe04 7 - -~ T
2504 7 Z§ ey 7y weiy| | 2Z04
0504~ " ozoL
(irm) (NN
10V 2iN1es 4 juaiuaanbay|l © 8104
$P0L " " " pl0s
Zv0L \ 18 e / LY 19l N/ ZL04
po0L 002

US 9,459,839 B2

Sheet 8 of 9

Oct. 4, 2016

U.S. Patent

g8 "OId

AN
\
nnd|
\J/ o | 9208
/ ///
f o $Z08
{v Kousoday Z weiniy| | 2208
UM Y N
0 40100 -~ nZ0e
BIINOSDM) s
| Aereeel Ag-perss ||
2€08 11 SINES 4 wewsinbay|| © 9108
7e0s || " ol | o8
Nm.%\w/ L 1Ry / LYy 10BJUY \,/ 2108
X /
ocon \/m aogmonmm\\ Y aowwmonm@ A/ S oL0e
¥008 z008

v8 Oid

{(unNdif
ol - o208
2y wepuy| 2208
///
\ 0208
/ AT
g Ag-peiss Ll
9e08 ainjee 4 ewennbay|| 9H08
zeos | L g oY Ly oepuy| 2108
w/ g Aioysodory / v Asopsodey /A
O0gog ~ S TTETEES W AIOSOGSY T g10g
y008 - \ 2008

US 9,459,839 B2

Sheet 9 of 9

Oct. 4, 2016

U.S. Patent

g6 "Old4

)
(inngd ||
1sa] C 9208
|| veos
\ 1O B | £208
T
/@ ?Bmmoamw\/ S a706
N \ S b008
{0 Asousodey {my Asoysoday
UM L0 UM L)
0} J01ED07 0] J01BI0
BIN0ssM) SoINosSEN}
\ AG-pBIsSe] Ag-pass]
9e06 1 anssi sy oMl - 9106
X CpLOB
P06 | Le bv||
cu06 - Lg 108y Ly pegy| | £106
/ / / A
0eoe PN g Aoysodsy 4 \aommcgmﬁ\/\/ L0686
\\\\\ ///
9008~ ©E008

v6 Old

\
{ond ||

jsoyl| | 9208

%o S PZ06

/ LD 1oBjILY \/ ZZ0R

, A
O HOUSOdOHL - pz06
\ . ¥006
{n Acysodey
Uiliim LD
01 J01E0T
B 0IN0SEN)
y {1inn) .\mm;m&mm&/
gs08 11 onss W] M ,//mwom
pe06 | | " ~|| | 708

zZS06 L€ 0B / Ly oepuy| | €108
S 4 \ N
0206 /\/m \Coummogmm\\ WA ‘Sﬁmogﬁm&“\>/

/ —_— - N

S oL06

\ N
\ “

2008

s

5008

US 9,459,839 B2

1
SYSTEMS AND METHODS TO
SYNCHRONIZE ARTIFACT RELATIONSHIPS
ACROSS A PLURALITY OF REPOSITORIES

BACKGROUND

1. Technical Field

The present disclosure generally relates to synchroniza-
tion of data across a plurality of repositories and, more
particularly, to systems and methods to efficiently synchro-
nize artifact relationships across a plurality of repositories
associated with different computer applications or tools.

2. Description of the Related Art

Many different computer applications or tools exist that
perform different functions or enable users to perform
different operations. As an example, many different tools
exist that assist the development of software products by an
organization. Each of such software development tools may
provide different features, functions, or data representations
that are useful for certain aspects or stages of the develop-
ment process or are useful to different individuals with
different roles within the organization. For example, a busi-
ness analyst may use a first software development tool to
perform her functions within the organization while a devel-
oper uses a second, different development tool to perform
his functions within the organization. Likewise, other indi-
viduals with different organizational roles (e.g., testers,
deployment, operations, etc.) may use additional tools as
well.

Each software development tool may allow users to create
and manage artifacts within a repository associated with
such software development tool. Each artifact is a represen-
tation of an aspect of the development process.

Different software development tools may use different
artifact types to represent different aspects of the develop-
ment process. As an example, a first software development
tool may allow the business analyst to generate and manage
artifacts that represent epics, features, user stories, require-
ments, or other business concepts. Likewise, a second soft-
ware development tool may allow the developer to generate
and manage artifacts that represent tasks, defects, or other
development concepts. A third software development tool
may allow a tester to generate and manage artifacts repre-
sentative of tests or other testing concepts.

Furthermore, each software development tool may allow
users to define and manage relationships between the arti-
facts contained in the associated repository. The relation-
ships may have different defined relationship types. For
example, the business analyst may define that a user story
artifact depends upon a particular feature artifact. Such
defined relationships may be useful in organizing and per-
forming the development process within each corresponding
tool.

BRIEF SUMMARY

The use of various different software development tools
within a single organization or with respect to a single
project results in various challenges. In particular, individu-
als that work as a team must be able to effectively collabo-
rate and communicate about various aspects of the devel-
opment process. Thus, for example, a developer’s progress
on resolving a defect artifact may be highly relevant to the
business analyst’s user story artifact. However, if such two
artifacts are contained in different repositories associated

10

15

20

25

30

35

40

45

50

55

60

65

2

with different tools, the developer and the business analyst
may have difficulty collaborating and communicating with
respect to such aspect.

As an example, one user may be forced to use an
unfamiliar tool to understand the current work status of a
second user. As another example, manually updating a first
artifact within a first repository to reflect changes or devel-
opments with respect to a second artifact in a second
repository is highly inefficient and prone to user-introduced
error.

The use of artifact relationships within repositories pro-
vides yet additional challenges. For example, a first set of
relationship types available within a first tool may not match
a second set of relationship types available within a second
tool. As another example, relationships that are internal
within a first repository may be an external relationship
when synchronized into a second repository, or may have
other differentiating characteristics. Thus, even assuming
that effective means to synchronize artifacts across different
repositories exist, the synchronization of relationships
across repositories with different artifact and relationship
types presents additional, unique challenges. Therefore, sys-
tems and methods to synchronize artifact relationships are
desirable.

A method of operation in a repository synchronizer to
synchronize artifact relationships across a plurality of
repositories, the repositories respectively associated with
respective ones of a plurality of software development tools,
the repository synchronizer comprising at least one proces-
sor and at least one non-transitory processor-readable
medium communicatively coupled to the at least one pro-
cessor and which stores at least one of processor-executable
instructions or data, may be summarized as including for a
first source artifact in a first repository associated with a first
development tool, the first source artifact which is logically
associated by a defined first relationship of a first relation-
ship type with a second source artifact: identifying a first
target artifact in a second repository that corresponds to the
first source artifact, the second repository associated with a
second development tool, the second development tool
different from the first development tool; determining a
defined second relationship type for a second relationship
between the first target artifact in the second repository that
corresponds to the first source artifact in the first repository
and a second target artifact that corresponds to the second
source artifact, the determined defined second relationship
type from a second set of defined relationship types for the
second repository which is different from a first set of
defined relationship types for the first repository; and caus-
ing the second relationship between the first target artifact
and the second target artifact to match the determined
defined second relationship type.

Determining a defined second relationship type for a
second relationship between the first target artifact in the
second repository that corresponds to the first source artifact
in the first repository and a second target artifact that
corresponds to the second source artifact may include deter-
mining the defined second relationship type based at least in
part on a schema mapping guide that provides a relationship
mapping from the first relationship type in the first reposi-
tory to the defined second relationship type in the second
repository. Determining the defined second relationship type
based at least in part on a schema mapping guide that
provides a relationship mapping from the first relationship
type in the first repository to the defined second relationship
type in the second repository may include determining the
defined second relationship type based at least in part on the

US 9,459,839 B2

3

schema mapping guide that provides a user-defined relation-
ship mapping from the first relationship type in the first
repository to the defined second relationship type in the
second repository. Causing the second relationship between
the first target artifact and the second target artifact to match
the determined defined second relationship type may include
establishing the second relationship of the determined
defined second relationship type between the first target
artifact and the second target artifact. Causing the second
relationship between the first target artifact and the second
target artifact to match the determined defined second rela-
tionship type may include changing the second relationship
between the first target artifact and the second target artifact
to the determined defined second relationship type from a
third relationship type. Causing the second relationship
between the first target artifact and the second target artifact
to match the determined defined second relationship type
may include determining that the second relationship exists
between the first target artifact and the second target artifact
as the determined defined second relationship type and
leaving the second relationship between the first target
artifact and the second target artifact as the determined
defined second relationship type.

The method may further include, prior to identifying the
first target artifact in the second repository that corresponds
to the first source artifact, receiving an indication of an
alteration of one or more data fields associated with the first
source artifact; and scanning the data fields of the first source
artifact to identify as unprocessed the defined first relation-
ship. Identifying the first target artifact in the second reposi-
tory that corresponds to the first source artifact may include
identifying, autonomously by the repository synchronizer,
the first target artifact in the second repository that corre-
sponds to the first source artifact, determining the defined
second relationship type for the second relationship may
include determining, autonomously by the repository syn-
chronizer, the defined second relationship type for the sec-
ond relationship, and causing the second relationship
between the first target artifact and the second target artifact
to match the determined defined second relationship type
may include causing, autonomously by the repository syn-
chronizer, the second relationship between the first target
artifact and the second target artifact to match the deter-
mined defined second relationship type. Identifying the first
target artifact in the second repository that corresponds to
the first source artifact may include identifying, periodically
and not responsive to human prompting, the first target
artifact in the second repository that corresponds to the first
source artifact, determining the defined second relationship
type for the second relationship may include determining,
periodically and not responsive to human prompting, the
defined second relationship type for the second relationship,
and causing the second relationship between the first target
artifact and the second target artifact to match the deter-
mined defined second relationship type may include caus-
ing, periodically and not responsive to human prompting,
the second relationship between the first target artifact and
the second target artifact to match the determined defined
second relationship type. Each of the first source artifact, the
second source artifact, the first target artifact, and the second
target artifact may include one of a task, a goal, a user story,
an epic, a defect, a requirement, an issue, or a test. Deter-
mining a defined second relationship type for a second
relationship between the first target artifact in the second
repository that corresponds to the first source artifact in the
first repository and a second target artifact that corresponds
to the second source artifact may include determining

5

10

15

20

25

30

35

40

45

50

55

60

65

4

whether the first relationship between the first source artifact
and the second source artifact is an internal relationship
within the first repository; responsive to determining that the
first relationship is an internal relationship within the first
repository, determining whether the second relationship
between the first target artifact and the second target artifact
is to be an internal relationship within the second repository;
and responsive to determining that the second relationship is
to be an internal relationship within the second repository,
determining whether the second target artifact exists within
the second repository.

Determining a defined second relationship type for a
second relationship between the first target artifact in the
second repository that corresponds to the first source artifact
in the first repository and a second target artifact that
corresponds to the second source artifact may further
include marking one or more of the first source artifact, the
defined first relationship, and the second target artifact as
pending in response to determining that the second target
artifact does not exist within the second repository. Deter-
mining a defined second relationship type for a second
relationship between the first target artifact in the second
repository that corresponds to the first source artifact in the
first repository and a second target artifact that corresponds
to the second source artifact may include determining
whether the first relationship between the first source artifact
and the second source artifact is an internal relationship
within the first repository; responsive to determining that the
first relationship is an internal relationship within the first
repository, determining whether the second relationship
between the first target artifact and the second target artifact
is to be an internal relationship within the second repository;
and responsive to determining that the second relationship is
not to be an internal relationship within the second reposi-
tory, generating a resource locator that describes a location
of the second source artifact within the first repository or a
third repository. Generating a resource locator that describes
a location of the second source artifact within the first
repository or a third repository may include generating a
user-selectable uniform resource locator (URL) providing
access to the location of the second source artifact within the
first repository or the third repository. Causing the second
relationship between the first target artifact and the second
target artifact to match the determined defined second rela-
tionship type may include associating the resource locator
that describes the location of the second source artifact with
the first target artifact as the second relationship. Determin-
ing a defined second relationship type for a second relation-
ship may include determining whether the first relationship
between the first source artifact and the second source
artifact is an internal relationship within the first repository
and causing the second relationship between the first target
artifact and the second target artifact to match the deter-
mined defined second relationship type may include, respon-
sive to determining that the first relationship is not an
internal relationship within the first repository, merging a
resource locator that describes a location of the second
source artifact within the first repository or a third repository
with any existing resource locators associated with existing
relationships of the first target artifact.

A system to enable collaborative development of software
products across a plurality of software development tools
may be summarized as including at least a first repository
that stores a first plurality of artifacts associated with a first
software development tool and a second repository that
stores a second plurality of artifacts associated with a second
software development tool that is different from the first

US 9,459,839 B2

5

software development tool; and a repository synchronizer to
synchronize artifact relationships across at least the first and
second repositories, the repository synchronizer comprising
at least one processor and at least one non-transitory pro-
cessor-readable medium communicatively coupled to the at
least one processor and which stores processor-executable
instructions, execution of which causes, for at least a first
source artifact of the first repository that is logically asso-
ciated by a defined first relationship of a first relationship
type with a second source artifact, the repository synchro-
nizer to: identify a first target artifact in the second reposi-
tory that corresponds to the first source artifact; determine a
defined second relationship type for a second relationship
between the first target artifact in the second repository that
corresponds to the first source artifact in the first repository
and a second target artifact that corresponds to the second
source artifact, the determined defined second relationship
type from a second set of defined relationship types for the
second repository which is different from a first set of
defined relationship types for the first repository; and cause
the second relationship between the first target artifact and
the second target artifact to match the determined defined
second relationship type.

The repository synchronizer may determine the defined
second relationship type based at least in part on a schema
mapping guide that provides a relationship mapping
between the first relationship type in the first repository and
the defined second relationship type in the second repository.
The relationship mapping provided by the schema mapping
guide may be user-defined. The instructions that cause the
repository synchronizer to cause the second relationship
between the first target artifact and the second target artifact
to match the determined defined second relationship type
may cause the repository synchronizer to establish the
second relationship of the determined defined second rela-
tionship type between the first target artifact and the second
target artifact. The instructions that cause the repository
synchronizer to cause the second relationship between the
first target artifact and the second target artifact to match the
determined defined second relationship type may cause the
repository synchronizer to change the second relationship
between the first target artifact and the second target artifact
to the determined defined second relationship type from a
third relationship type. The instructions that cause the
repository synchronizer to cause the second relationship
between the first target artifact and the second target artifact
to match the determined defined second relationship type
may cause the repository synchronizer to determine that the
second relationship exists between the first target artifact
and the second target artifact as the determined defined
second relationship type and leave the second relationship
between the first target artifact and the second target artifact
as the determined defined second relationship type. The
instructions may cause the repository synchronizer to
autonomously identify the first target artifact in the second
repository, autonomously determine the defined second rela-
tionship type for the second relationship, and autonomously
cause the second relationship between the first target artifact
and the second target artifact to match the determined
defined second relationship type. The instructions may cause
the repository synchronizer to periodically and not respon-
sive to human prompting identify the first target artifact in
the second repository, periodically and not responsive to
human prompting determine the defined second relationship
type for the second relationship, and periodically and not
responsive to human prompting cause the second relation-

10

15

20

25

30

35

40

45

50

55

60

65

6

ship between the first target artifact and the second target
artifact to match the determined defined second relationship
type

A method to synchronize artifact relationships across a
plurality of repositories respectively associated with a plu-
rality of software development tools may be summarized as
including receiving, by one or more computing devices, data
that describes a first attribute field associated with a first
source artifact contained in a source repository associated
with a first software development tool of the plurality of
software development tools, the first attribute field that
describes a first relationship of a first relationship type
between the first source artifact and at least a second source
artifact; obtaining, by the one or more computing devices, a
schema mapping guide that describes at least one relation-
ship mapping between the first relationship type in the
source repository and a second relationship type in a target
repository associated with a second software development
tool of the plurality of software development tools, the
second software development tool different than the first
software development tool; and updating, by the one or more
computing devices based at least in part on the first attribute
field and the schema mapping guide, a second attribute field
associated with a first target artifact contained in the target
repository to describe a second relationship of the second
relationship type between the first target artifact and at least
a second target artifact.

Obtaining, by the one or more computing devices, the
schema mapping guide may include obtaining, by the one or
more computing devices, the schema mapping guide that
describes at least one user-defined relationship mapping
between the first relationship type in the source repository
and the second relationship type in the target repository.
Receiving, by the one or more computing devices, data that
describes a first attribute field associated with a first source
artifact may include receiving, by the one or more comput-
ing devices, an indication that a change has occurred in one
or more attribute fields associated with the first source
artifact and scanning, by the one or more computing devices,
the one or more attribute fields to identify as unprocessed a
change in the first attribute field.

The method may further include determining, by the one
or more computing devices, whether the second target
artifact is included in the target repository with the first
target artifact, wherein when it is determined that the second
target artifact is not included in the target repository with the
first target artifact, updating, by the one or more computing
devices based at least in part on the first attribute field and
the schema mapping guide, a second attribute field associ-
ated with a first target artifact comprises generating, by the
one or more computing devices, a resource locator that
describes a location of the second target artifact within the
source repository or a third repository and associating, by
the one or more computing devices, the resource locator
with the first target artifact.

The method may further include determining, by the one
or more computing devices, whether the second source
artifact is included in the source repository with the first
source artifact, wherein when it is determined that the
second source artifact is not included in the source reposi-
tory with the first source artifact, updating, by the one or
more computing devices based at least in part on the first
attribute field and the schema mapping guide, a second
attribute field associated with a first target artifact comprises
associating, by the one or more computing devices, a
resource locator that describes a location of the second
source artifact with the first target artifact.

US 9,459,839 B2

7

A method of operation in a repository synchronizer to
synchronize artifact relationships across a plurality of
repositories, the repositories respectively associated with
respective ones of a plurality of computer applications, the
repository synchronizer comprising at least one processor
and at least one non-transitory processor-readable medium
communicatively coupled to the at least one processor and
which stores at least one of processor-executable instruc-
tions or data, may be summarized as including for a first
source artifact in a first repository associated with a first
computer application, the first source artifact which is logi-
cally associated by a defined first relationship of a first
relationship type with a second source artifact: identifying a
first target artifact in a second repository that corresponds to
the first source artifact, the second repository associated with
a second computer application; determining a defined sec-
ond relationship type for a second relationship between the
first target artifact in the second repository that corresponds
to the first source artifact in the first repository and a second
target artifact that corresponds to the second source artifact,
the determined defined second relationship type from a
second set of defined relationship types for the second
repository which is different from a first set of defined
relationship types for the first repository; and causing the
second relationship between the first target artifact and the
second target artifact to match the determined defined sec-
ond relationship type.

The second computer application may be a different
application than the first computer application. The first
computer application may be a first instance of a computer
application and the second computer application may be a
second instance of the same computer application. The first
and second computer applications may be software devel-
opment tools or may be computer applications other than
software development tools.

A system to enable collaboration across a plurality of
computer applications may be summarized as including at
least a first repository that stores a first plurality of artifacts
associated with a computer application and a second reposi-
tory that stores a second plurality of artifacts associated with
a second computer; and a repository synchronizer to syn-
chronize artifact relationships across at least the first and
second repositories, the repository synchronizer comprising
at least one processor and at least one non-transitory pro-
cessor-readable medium communicatively coupled to the at
least one processor and which stores processor-executable
instructions, execution of which causes, for at least a first
source artifact of the first repository that is logically asso-
ciated by a defined first relationship of a first relationship
type with a second source artifact, the repository synchro-
nizer to: identify a first target artifact in the second reposi-
tory that corresponds to the first source artifact; determine a
defined second relationship type for a second relationship
between the first target artifact in the second repository that
corresponds to the first source artifact in the first repository
and a second target artifact that corresponds to the second
source artifact; and cause the second relationship between
the first target artifact and the second target artifact to match
the determined defined second relationship type.

The second computer application may be a different
application than the first computer application. The first
computer application may be a first instance of a computer
application and the second computer application may be a
second instance of the same computer application. The first
and second computer applications may be software devel-
opment tools or may be computer applications other than
software development tools. The determined defined second

35

40

45

50

55

8

relationship type may be from a second set of defined
relationship types for the second repository which is differ-
ent from a first set of defined relationship types for the first
repository.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

In the drawings, identical reference numbers identify
similar elements or acts. The sizes and relative positions of
elements in the drawings are not necessarily drawn to scale.
For example, the shapes of various elements and angles are
not drawn to scale, and some of these elements are arbi-
trarily enlarged and positioned to improve drawing legibil-
ity. Further, the particular shapes of the elements as drawn,
are not intended to convey any information regarding the
actual shape of the particular elements, and have been solely
selected for ease of recognition in the drawings.

FIG. 1 is a block diagram of a system to synchronize
artifact relationships, according to at least one illustrated
embodiment.

FIG. 2 is a block diagram of an artifact data structure,
according to at least one illustrated embodiment.

FIG. 3 is a graphical diagram of an internal artifact
relationship, according to at least one illustrated embodi-
ment.

FIG. 4 is a graphical diagram of an external artifact
relationship, according to at least one illustrated embodi-
ment.

FIG. 5 is a flow chart diagram showing a method to
synchronize artifact relationships, according to at least one
illustrated embodiment.

FIGS. 6A-6C are flow chart diagrams showing a method
to synchronize artifact relationships, according to at least
one illustrated embodiment.

FIGS. 7A and 7B are block diagrams respectively show-
ing artifacts before and after an internal-to-internal synchro-
nization, according to at least one illustrated embodiment.

FIGS. 8A and 8B are block diagrams respectively show-
ing artifacts before and after an internal-to-external synchro-
nization, according to at least one illustrated embodiment.

FIGS. 9A and 9B are block diagrams respectively show-
ing artifacts before and after an external-to-external syn-
chronization, according to at least one illustrated embodi-
ment.

DETAILED DESCRIPTION

In the following description, certain specific details are set
forth in order to provide a thorough understanding of various
disclosed embodiments. However, one skilled in the relevant
art will recognize that embodiments may be practiced with-
out one or more of these specific details, or with other
methods, components, materials, etc. In other instances,
well-known structures associated with computing devices
have not been shown or described in detail to avoid unnec-
essarily obscuring descriptions of the embodiments.

Unless the context requires otherwise, throughout the
specification and claims that follow, the word “comprising”
is synonymous with “including,” and is inclusive or open-
ended (i.e., does not exclude additional, unrecited elements
or method acts).

Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure or characteristic described in connection with the
embodiment is included in at least one embodiment. Thus,
the appearances of the phrases “in one embodiment” or “in

US 9,459,839 B2

9

an embodiment” in various places throughout this specifi-
cation are not necessarily all referring to the same embodi-
ment. Furthermore, the particular features, structures, or
characteristics may be combined in any suitable manner in
one or more embodiments.

As used in this specification and the appended claims, the
singular forms “a,” “an,” and “the” include plural referents
unless the content clearly dictates otherwise. It should also
be noted that the term “or” is generally employed in its
broadest sense, that is, as meaning “and/or” unless the
content clearly dictates otherwise.

The headings and Abstract of the Disclosure provided
herein are for convenience only and do not interpret the
scope or meaning of the embodiments.

FIG. 1 is a block diagram of a system 100 to synchronize
artifact relationships, according to at least one illustrated
embodiment. Generally, the system 100 is organized in a
distributed fashion in which a user computing device 110
interacts with a repository synchronization device 120, a
first software development tool 140, and an n-th software
development tool 160 via a communications network 105.

The system 100 can be used to develop software products.
For example, a user can employ user computing device 110
to interact with the first software development tool 140 to
perform aspects of the software development process that
are enabled by the first software development tool 140.
Although only a single user computing device 110 is shown
in FIG. 1, the system 100 can include any number of user
computing devices via which different individuals in an
organization interact with available software development
tools (e.g., tools 140 and 160) to develop software products.

The user computing device 110 includes a processor 112
and a memory 114. The processor 112 can be one processor
or a plurality of processors that are operatively coupled. The
processor 112 can be any processing device, such as a
microprocessor, microcontroller, integrated circuit, circuitry
that implements computer logic, or some combination
thereof. The memory 114 can include any non-transitory
information storage device, including, but not limited to,
RAM, ROM, hard drives, flash drives, optical media, other
memory devices, or some combination thereof. The memory
114 can store information accessible by processor 112,
including instructions 116 that can be executed by processor
112. The instructions 116 can be any set of instructions that
when executed by the processor 112, cause the processor 112
to provide desired functionality. The memory 114 can also
store data 118.

Software development tools 140 and 160 may provide
different features, functions, or data representations that are
useful for certain aspects or stages of the development
process or are useful to different individuals with different
roles within the organization. For example, a business ana-
lyst may use the first software development tool 140 to
perform her functions within the organization while a devel-
oper uses the n-th development tool 160 to perform his
functions within the organization.

Although only two software development tools are explic-
itly shown, the system 100 may include any number of
different or similar software development tools. For
example, system 100 can include software development
tools that provide application lifecycle management, project
portfolio management, requirements management, develop-
ment tools, quality management, IT assessment or service
management, operations tools, or tools designed for other
aspects of the development cycle. System 100 can include
more than one tool from each category of tools provided
above.

10

15

20

25

30

35

40

45

50

55

60

65

10

The software development tools 140 and 160 can also be
instances of the same software development tool. Thus, the
system 100 may include any number of software develop-
ment tools or other programs or devices that may be unique
from each other, instances of the same program or device, or
some combination thereof.

Furthermore, although the present disclosure is discussed
with reference to software development tools, the teachings
and components of the present disclosure can be applied to
many other contexts as well. In particular, alternatively or in
addition to software development tools 140 and 160, the
system 100 can further include any number of other tools,
programs, applications, or devices that perform or enable
operations other than the development of software. For
example, the present disclosure can be applied to synchro-
nize artifacts across repositories associated with any group
of arbitrary tools, programs, applications, or devices, includ-
ing for example, email clients, employee management tools,
asset management tools, resource allocation or planning
tools, manufacturing flow tools, inventory management
tools, document management systems, personal information
organization systems, financial management systems, gam-
ing systems, mapping systems, etc. In particular, the reposi-
tory synchronization device 120 can synchronize artifacts
and artifact relationships included in repositories associated
with any many different resources.

Referring again to FIG. 1, each development tool 140 and
160 includes a processor (142 and 162, respectively) and a
non-transitory memory (144 and 164, respectively). Similar
to processor 112 and memory 114, processors 142 and 162
can respectively be any processing device or combination of
such devices. Likewise, memory 144 and memory 164 can
respectively include any information storage device or com-
bination of such devices. Each memory 144 and 164 can
store instructions (146 and 166, respectively) and data (148
and 168, respectively).

In some implementations, software development tools
140 and 160 respectively include one or more server com-
puting devices. The server computing devices can be
arranged according to any computer architecture, including
parallel, sequential, and/or distributed computing architec-
tures. The server computing devices can provide the soft-
ware development functionality as a service over network
105. In other implementations, software development tools
140 and 160 can be executed locally at the user computing
device 110.

Each software development tool included in system 100
stores a plurality of artifacts in an associated repository. For
example, the first software development tool 140 stores a
plurality of artifacts 152 in a first repository 150 while the
n-th development tool 160 stores artifacts 172 in repository
170. Generally, artifacts are representations of aspects of the
software development process. Artifacts can include, with-
out limitation, a task, a goal, a user story, an epic, a defect,
a requirement, an issue, a test, a feature, a bug, an asset, a
file, a software package, or other representations of aspects
of the development process.

Relationships can be defined between artifacts. As will be
discussed further with reference to FIGS. 3 and 4, relation-
ships can be internal relationships between artifacts con-
tained within the same repository or external relationships
between artifacts respectively contained in different reposi-
tories.

Each repository can be a single database or a plurality of
databases. In instances employing a plurality of databases,
such databases can be co-located or can be distributed at
different locations. Each repository can be co-located with

US 9,459,839 B2

11

its corresponding development tool or can be located
remotely and accessed over the network 105 or other con-
nection. In some implementations, the repository for each
development tool is stored in a local non-transitory memory
associated with one or more servers implementing such
development tool.

Repository synchronization device 120 synchronizes arti-
facts between repositories 150 and 170. In particular, reposi-
tory synchronization device 120 synchronizes artifact rela-
tionships between repositories 150 and 170. In some
instances, the repository synchronization device instructs or
commands (e.g., via an application programming interface
(API)) the software development tools 140 and 160 to make
changes to or otherwise alter data contained within their
respective repositories 150 and 170.

The repository synchronization device 120 includes a
processor 122 and a memory 124. The processor 122 can be
one processor or a plurality of processors that are opera-
tively coupled. The processor 122 can be any processing
device, such as a microprocessor, microcontroller, integrated
circuit, other device that implements computer logic, or
some combination thereof. The memory 124 can include any
non-transitory information storage device, including, but not
limited to, RAM, ROM, hard drives, flash drives, optical
media, other memory devices, or some combination thereof.
The memory 124 can store information accessible by pro-
cessor 122, including instructions that can be executed by
processor 122. The instructions can be any set of instructions
that when executed by the processor 122, cause the proces-
sor 122 to provide desired functionality. The memory 124
can also store data.

In some implementations, repository synchronization
device 120 includes one or more server computing devices.
The server computing devices can be arranged according to
any computer architecture, including parallel, sequential,
and/or distributed computing architectures. The server com-
puting devices can interact with software development tools
140 and 160 over network 105 to synchronize artifacts 152
and 172. In other implementations, repository synchroniza-
tion device 120 is executed locally at the user computing
device 110.

The repository synchronization device 120 includes a
repository synchronizer 126, one or more schema mapping
guides 128, and a schema mapping customizer 130.

The repository synchronization device 120 implements
the repository synchronizer 126 to synchronize artifacts
across a plurality of repositories. In particular, the repository
synchronization device 120 implements the repository syn-
chronizer 126 to synchronize artifact relationships across a
plurality of repositories. For example, repository synchro-
nization device can implement repository synchronizer 126
to perform aspects of methods 500 and 600 of FIG. 5 and
FIGS. 6A through 6C, respectively. In some implementa-
tions, the repository synchronizer 126 interacts with the
software development tools 140 and 160 using vendor-
approved or vendor-supplied APIs respectively associated
with the development tools 140 and 160.

In some implementations, the repository synchronization
device 120 implements the repository synchronizer 126 in
an automated or autonomous fashion. For example, synchro-
nization may be performed periodically not responsive to
human prompting or may be performed autonomously upon
receiving at the device 120 an indication from a software
development tool that an attribute (e.g., relationship) of a
particular artifact has been altered. Alternatively, the reposi-
tory synchronization device 120 implements the repository
synchronizer 126 responsive to human prompting or accord-

10

15

20

25

30

35

40

45

50

55

60

65

12

ing to a defined schedule. In some implementations, the
repository synchronization device 120 implements the
repository synchronizer 126 according to one or more user-
defined conditions that specify certain rules, logic, times,
repositories, and/or artifact or relationship types according
to which conditional synchronization should (or should not)
be performed.

In some implementations, the repository synchronizer 126
includes processor-executable instructions stored in or
loaded into memory 124 and executed by processor 122. In
other implementations, the repository synchronizer 126
includes one or more circuits (e.g., integrated circuits), logic
components, or other items of computer hardware config-
ured to implement computer logic or perform other func-
tionality. In other implementations, the repository synchro-
nizer 126 can be implemented using some combination of
processor-executable instructions and circuitry.

Each of the schema mapping guides 128 provides one or
more relationship mappings between relationship types in
different repositories. In particular, each software develop-
ment tool and corresponding repository included in system
100 may have a set of available relationship types to
describe relationships associated with artifacts included in
its repository. The sets of available relationship types asso-
ciated with different repositories may be identical, different,
overlapping, and/or non-overlapping. For example, if the
artifacts are synchronized across multiple instances of the
same tool, the corresponding sets of available relationship
types may be identical. Alternatively, the tool may allow the
user of each particular instance to customize or define its
corresponding set of available relationship types and, there-
fore, the corresponding sets of available relationship types
may be non-identical. Further, the sets of available relation-
ship types can include subsets that are artifact type-specific.

As one example, in the first software development tool
140, the business analyst may represent that a requirement
artifact is “blocked by” a user story. However, in the n-th
software development tool 160, the “blocked by” relation-
ship type may be unavailable, as the development tool 160
uses a second, different set of relationship types. The reposi-
tory synchronizer 126 uses the schema mapping guides 128
to synchronize artifact relationships between repositories. In
particular, the repository synchronizer 126 uses the one or
more relationship mappings provided by a particular schema
mapping guide associated with two particular repositories to
determine a target relationship type to which a source
relationship type should be mapped. For example, a particu-
lar schema mapping guide may indicate that the “blocked
by” relationship type available in the first repository 150
maps to a “related to” relationship type in the n-th repository
170. Therefore, the repository synchronizer 126 will syn-
chronize the “blocked by” relationship type in the first
repository 152 to the “related to” relationship type in the n-th
repository 170, as indicated by the corresponding schema
mapping guide 128.

The repository synchronization device 120 implements
the schema mapping customizer 130 to allow a user to
customize one or more of the schema mapping guides 128.
In particular, the repository synchronization device 120
implements the schema mapping customizer 130 to revise,
create, delete, copy, update, or otherwise customize one or
more of the schema mapping guides 128 based at least in
part on user input received via user computing device 110.
For example, schema mapping customizer 130 can interact
with user computing device 110 to provide at the user
computing device 110 a user interface by which a user
adjusts, defines, or otherwise customizes one or more of the

US 9,459,839 B2

13

relationship mappings provided by a particular schema
mapping guide 128. In some implementations, the schema
mapping customizer 130 stores one or more predefined
and/or user-defined or user-customized schema mapping
guide templates that may be applied to particular reposito-
ries or used by a user as a template for additional customi-
zation of a particular schema mapping guide 128.

In some implementations, the schema mapping custom-
izer 130 includes processor-executable instructions stored in
or loaded into memory 124 and executed by processor 122.
In other implementations, the schema mapping customizer
130 includes one or more circuits (e.g., integrated circuits),
logic components, or other items of computer hardware
configured to implement computer logic or perform other
functionality. In other implementations, the schema map-
ping customizer 130 can be implemented using some com-
bination of processor-executable instructions and circuitry.

Network 105 can be any type of communications net-
work, such as a local area network (e.g., intranet), wide area
network (e.g., Internet), or some combination thereof and
can include any number of wired or wireless links. In
general, communication between the components of system
100 via network 105 can be carried via any type of wired
and/or wireless connection, using a wide variety of commu-
nication protocols (e.g., TCP/IP, HTTP, SMTP, FTP), encod-
ings or formats (e.g., HTML, XML), and/or protection
schemes (e.g., VPN, secure HTTP, SSL).

Thus, the repository synchronization device 120 enables
collaboration by synchronizing artifacts and artifact rela-
tionships across repositories associated with different soft-
ware development tools employed by different individuals
within an organization. Such may advantageously eliminate
information silos around each functional discipline, while
maintaining and enhancing existing tool infrastructure. By
allowing individuals to operate within their development
tool of choice while receiving continual updates from other
development tools, software product development and
deployment is strengthened and investment in existing tools
is reinforced. Further, the schema mapping customizer 130
enables relationship mapping customization that increases
the robustness of the infrastructure and allows for organi-
zation and/or project-specific relationship mapping configu-
rations to be specified.

Due to the inherent flexibility of computer-based systems,
a great variety of possible configurations, combinations, and
divisions of tasks and functionality between and among the
components of the system 100 are possible. For instance,
system 100 can be implemented using a single computing
device or across multiple computing devices, as shown in
FIG. 1. Tasks shown as being performed at a certain device
can instead be performed at other devices. Any combination
of general-purpose and special-purpose computing devices
can be used.

FIG. 2 is a block diagram of an example data structure of
an artifact 200, according to at least one illustrated embodi-
ment. As shown in FIG. 2, artifact 200 includes a plurality
of attribute fields that store information that describes vari-
ous attributes of the artifact 200. For example, the attribute
fields can store information that includes a unique identifier
202, a title 204, an artifact type 206, and any additional
attributes 212 for which storage of data may be advanta-
geous (e.g., creation date, editing date, comments, etc.).

The data structure for the artifact 200 also includes one or
more attribute fields that respectively store information that
describes one or more relationships between the artifact 200
and one or more respective other artifacts. As an example, a
first relationship field 208 stores information that describes

10

15

20

25

30

35

40

45

50

55

60

65

14

a first relationship between the artifact 200 and a first
artifact. Likewise, an n-th relationship field 210 stores
information that describes an n-th relationship between the
artifact 200 and an n-th artifact.

In some implementations, a component of the system 100
(e.g., the repository 126 or the first software development
tool 140) creates the relationship fields responsive to cre-
ation of the corresponding relationship. In other implemen-
tations, a component of the system 100 creates the relation-
ship fields upon creation of the artifact 200 and the
relationship fields simply remain null until populated with
particular relationships.

In some implementations, each relationship field stores a
relationship type associated with the corresponding relation-
ship. As an example, the first relationship field 208 can store
information that describes a first relationship type associated
with the first relationship between the artifact 200 and the
first artifact. In other implementations, the first relationship
type is stored in an additional attribute field that is different
than the first relationship field 208.

In yet further implementations, the data structure for each
artifact 200 includes an attribute field for each relationship
type available within the corresponding repository. For
example, if the artifact 200 exists within a repository asso-
ciated with a software development tool for which six
relationship types are available, then the data structure may
include at least six relationship fields that respectively
correspond to the six relationship types. If the artifact 200
has a relationship with a first artifact of a particular rela-
tionship type, then the component of the system 100 popu-
lates the corresponding relationship field with the identity of
the first artifact. If the artifact 200 has relationships of the
same relationship type with plural artifacts, then the com-
ponent of the system 100 creates multiple relationship fields
corresponding to the same relationship type. Alternatively,
the component of the system 100 may create multiple
subfields within a single relationship field that corresponds
to the particular relationship type. As yet another example,
the identities of each of the artifacts for which artifact 200
has a relationship of such relationship type may be stored as
a string or set of identifiers within a single relationship field.
Other data structures may be used as well.

FIG. 3 is a graphical diagram 300 of an internal artifact
relationship, according to at least one illustrated embodi-
ment. Diagram 300 shows a first repository 302 associated
with software development tool. The first repository 302
stores a first artifact 304 and a second artifact 306. A defined
relationship 308 exists between the artifacts 306 and 304.
Because the first and second artifacts 304 and 306 are both
included within the first repository 302, the relationship 308
is denominated as an internal relationship within the reposi-
tory 302.

The relationship 308 indicates that the second artifact 306
is a child of the first artifact 304. Thus, the relationship 308
is of the “child of” relationship type. An attribute field
associated with the second artifact 306 stores data that
describes the relationship 308. In some implementations, an
attribute field associated with the first artifact 304 also stores
data that describes the relationship 308. For example, the
data may describe that the second artifact 306 is a child of
the first artifact 304 or that the first artifact 304 is a parent
of the second artifact 306. However, in other implementa-
tions, the data structure of the first artifact 304 does not store
data that describes the relationship 308.

FIG. 4 is a graphical diagram 400 of an external artifact
relationship, according to at least one illustrated embodi-
ment. Diagram 400 shows a third repository 402 associated

US 9,459,839 B2

15

with a third software development tool and a fourth reposi-
tory 404 associated with a fourth software development tool.
Third repository 402 stores a third artifact 406 and fourth
repository 404 stores a fourth artifact 408. A defined rela-
tionship 410 exists between the artifacts 406 and 408.
Because the third and fourth artifacts 406 and 408 are
respectively included in different repositories, the relation-
ship 410 is an external relationship.

The relationship 410 indicates that the third artifact 406 is
tested-by the fourth artifact 408. Thus, the relationship 410
is of the “tested-by” relationship type. An attribute field
associated with the third artifact 406 stores data that
describes the relationship 410. In some implementations, an
attribute field associated with the fourth artifact 408 also
stores data that describes the relationship 410. For example,
the data may describe that the third artifact 406 is tested-by
the fourth artifact 408 or that the fourth artifact 408 tests the
third artifact 406. However, in other implementations, the
data structure of the fourth artifact 408 does not store data
that describes the relationship 410.

FIG. 5 is a flow chart diagram showing a method 500 to
synchronize artifact relationships, according to at least one
illustrated embodiment. Although method 500 is discussed
as being performed by repository synchronizer 126 of FIG.
1, in some implementations, other components or combina-
tions of components of the system 100 perform aspects of
method 500 in addition or alternatively to repository syn-
chronizer 126. For example, the repository synchronizer 126
may instruct or command a particular software development
tool to perform desired operations on behalf of the reposi-
tory synchronizer 126. Method 500 begins at 502.

At 502, the repository synchronizer 126 identifies a first
relationship of a first relationship type between a first source
artifact in a first repository and a second source artifact. The
first repository is associated with a first software develop-
ment tool. The second source artifact can be included in the
first repository or included in a repository different than the
first repository.

In some implementations, identifying the first relationship
at 502 includes receiving an indication of an alteration of
one or more data fields associated with the first source
artifact and scanning the data fields of the first source artifact
to identify as unprocessed the first relationship. For
example, the indication of the alteration of the one or more
data fields may be received from a software development
tool that stores the first source artifact. Alternatively, iden-
tifying the first relationship at 502 can include automatically
scanning the data fields of the first source artifact to identity
the alteration of the one or more data fields without receiving
an indication from the software development tool. The
alteration of the one or more data fields may include, for
example, alteration of data responsive to a creation, a
change, or a deletion of the first relationship.

At 504, the repository synchronizer 126 identifies a first
target artifact in a second repository that corresponds to the
first source artifact. The second repository is associated with
a second software development tool that is different from the
first software development tool.

The first target artifact in the second repository may have
been previously mapped to or otherwise synchronized with
respect to the first source artifact in the first repository. Thus,
in some implementations, identifying the first target artifact
at 504 includes accessing or otherwise reading previously
stored data that indicates that the first source artifact is
mapped to the first target artifact. For example, such data
may be stored in an attribute field associated with the first
source artifact. As another example, the repository synchro-

20

25

30

40

45

50

16

nizer 126 can consult a roster or manifest of artifact map-
pings to identify that the first target artifact in the second
repository corresponds to the first source artifact in the first
repository.

At 506, the repository synchronizer 126 determines a
defined second relationship type for a second relationship
between the first target artifact and a second target artifact.
The second target artifact can be included in the second
repository or included in a repository different than the
second repository. The second target artifact may have been
previously mapped to the second source artifact.

In some implementations, the defined second relationship
type is determined at 506 based at least in part on a schema
mapping guide that provides a relationship mapping from
the first relationship type in the first repository to the defined
second relationship type in the second repository. As one
example, upon identifying the first and second repositories,
a particular schema mapping guide associated with such first
and second repositories is obtained. The obtained schema
mapping guide provides a relationship mapping from the
first relationship type in the first repository to the defined
second relationship type in the second repository. Therefore,
determining the second relationship type at 506 can include
reading and/or applying the relationship mapping provided
by the schema mapping guide.

In some implementations, the relationship mapping pro-
vided by the schema mapping guide is a user-defined rela-
tionship mapping. For example, the relationship mapping
provided by schema mapping guide may have been custom-
ized through the use of a schema mapping customizer.

In other implementations, the relationship mapping pro-
vided by the schema mapping guide is specific not only to
the first and second repository but also to the artifact type of
the first source artifact, the artifact type of the second source
artifact, the artifact type of the first target artifact, and/or the
artifact type of the second target artifact. Thus, the schema
mapping guide may provide a mapping from a unique set of
artifact types and relationship types to another unique set of
artifact types and relationship types.

In some implementations of the present disclosure, the
relationship mappings provided by schema mapping guides
specify different mappings for relationships according to
whether the first relationship is an internal relationship or an
external relationship. Therefore, in some implementations,
determining the defined second relationship type at 506
includes determining whether the first relationship between
the first source artifact and the second source artifact is an
internal relationship within the first repository.

As one example, in response to determining that the first
relationship is an internal relationship within the first reposi-
tory, determining the second relationship type at 506 can
include determining whether the second relationship is to be
an internal relationship within the second repository. If the
second relationship is to be an internal relationship within
the second repository, then the repository synchronizer 126
can perform a check at 506 to ensure that the second target
artifact presently exists within the second repository. Such
may ensure that the second target artifact is created if
needed. For example, one or more of the first source artifact,
the first relationship, the second target artifact, or other items
may be marked as pending until the second target artifact is
created.

As another example, if the second relationship is to be an
external relationship, then the repository synchronizer 126
can generate a resource locator that describes a location of
the second source artifact within the first repository or a third
repository. For example, the resource locator can be a

US 9,459,839 B2

17

uniform resource locator (URL) that provides access to the
location of the second source artifact within the first reposi-
tory or the third repository. The URL may be user-selectable.

As yet another example, if it is determined at 506 that the
first relationship is an external relationship, then certain
other actions may be taken to synchronize the first and
second relationships, as will be discussed further with
respect to 508.

At 508, the repository synchronizer 126 can cause the
second relationship to match the determined defined second
relationship type. For example, an attribute field or other
data item associated with the first target artifact and/or the
second target artifact may be adjusted, created, or updated to
cause the second relationship to have the second relationship
type.

As an example, the repository synchronizer 126 can
populate an attribute field of the first target artifact that is
particularly associated with the second relationship type
with the identity of second target artifact or otherwise
amended to describe the second relationship. Alternatively
or additionally, the repository synchronizer 126 can populate
an attribute field of the second target artifact that is particu-
larly associated with the second relationship type with the
identity of first target artifact or otherwise amended to
describe the second relationship. In some implementations,
the repository synchronizer 126 instructs the appropriate
software development tool to populate the appropriate attri-
bute field.

Thus, causing the second relationship to match the deter-
mined defined second relationship type can include estab-
lishing the second relationship of the determined defined
second relationship type; changing the second relationship
to the determined defined second relationship type from a
third relationship type; determining that the second relation-
ship of the second relationship type already exists between
the first and second target artifacts and, therefore, leaving the
second relationship as the second relationship type; or other
actions to cause the second relationship to match the deter-
mined defined second relationship type.

Furthermore, as discussed above, in certain implementa-
tions, one or more components of the system 100 can
perform different actions to synchronize relationships
according to whether the relationships to be synchronized
are internal-to-internal, internal-to-external, or external-to-
external. As one example, if it is determined at 506 that the
first relationship is internal to the first repository, but the
second relationship is to be external, then causing the second
relationship to match the determined defined second rela-
tionship type at 508 can include associating a resource
locator that describes the location of the second source
artifact with the first target artifact as the second relation-
ship. For example, the resource locator can be stored in an
attribute field that corresponds to or otherwise describes the
second relationship.

As another example, if it is determined at 506 that the first
relationship is external to the first repository, then causing
the second relationship to match the determined defined
second relationship type at 508 can include copying a
resource locator that describes a location of the second
source artifact from an attribute field of the first source
artifact to an attribute field of the first target artifact.

Method 500 may terminate after 508, for example until
invoked again.

FIGS. 6A-6C are flow chart diagrams showing a method
600 to synchronize artifact relationships, according to at
least one illustrated embodiment. Although method 600 is
discussed as being performed by repository synchronizer

10

15

20

25

30

35

40

45

50

55

60

65

18

126 of FIG. 1, in some implementations, other components
or combinations of components of the system 100 perform
aspects of method 500 in addition or alternatively to reposi-
tory synchronizer 126. For example, the repository synchro-
nizer 126 may instruct or command a particular software
development tool to perform desired operations on behalf of
the repository synchronizer 126. Method 600 begins at 602.

At 602, the repository synchronizer 126 receives a
changed artifact. For example, repository synchronizer 126
can observe (e.g., via periodic and autonomous scanning)
that one or more attribute fields of a particular artifact have
been altered. Alternatively, a software development tool can
actively provide an indication that one or more attribute
fields of a particular artifact have been altered to the reposi-
tory synchronizer 126.

At 604, the repository synchronizer 126 scans the artifact
for unprocessed relationship fields. For example, the reposi-
tory synchronizer 126 can scan the attribute fields of the
changed artifact to identify whether one or more relationship
fields have changed and remain unprocessed.

At 606, the repository synchronizer 126 determines
whether one or more unprocessed relationship fields are
found. For example, the results of the scan performed at 604
may be considered at 606. If it is determined at 606 that no
unprocessed relationship fields were found, then method 600
proceeds to 632 of FIG. 6C.

However, if it is determined at 606 that at least one
unprocessed relationship field is found, the method 600
proceeds to 608. For example, the at least one unprocessed
relationship field may describe a first relationship between
the changed artifact and a second source artifact.

At 608, the repository synchronizer 126 determines
whether the synchronization to be performed with respect to
the unprocessed relationship field is an internal-to-internal
synchronization. For example, the repository synchronizer
126 can obtain a schema mapping guide that describes one
or more relationship mappings between a source repository
in which changed artifact is stored and a target repository in
which a first target artifact is stored. The first target artifact
may have previously been mapped to the changed artifact.
The obtained schema mapping guide can indicate or other-
wise guide to repository synchronizer 126 to determine
whether the synchronization to be performed with respect to
the unprocessed relationship field is an internal-to-internal
synchronization.

If it is determined at 608 that the synchronization to be
performed is not an internal-to-internal synchronization,
then method 600 proceeds to 622 of FIG. 6B. However, it is
determined at 608 that the synchronization to be performed
is an internal-to-internal synchronization, then method 600
proceeds to 610.

At 610, the repository synchronizer 126 resolves the
relationship into target artifact identities. For example, a first
and second target artifact may have previously been respec-
tively mapped to the changed artifact and the second source
artifact. Thus, resolving the relationship into the target
artifact identities at 610 can include reading previously
stored data that indicates that the changed artifact is mapped
to the first target artifact. As another example, a roster or
manifest of artifact mappings can be consulted at 610 to
determine the identities of the target artifacts to which the
unprocessed relationship should be synchronized. As the
synchronization is an internal-to-internal synchronization,
the target artifacts should reside within a single target
repository.

At 612, the repository synchronizer 126 determines
whether any referenced target artifacts are missing. For

US 9,459,839 B2

19

example, the target repository can be accessed or otherwise
analyzed at 612 to ensure that both the first and second target
artifacts currently exist within the target repository. More
particularly, a referenced target artifact can be missing if it
has not yet been synchronized from the source repository
(i.e., generated within the target repository on the basis of
being synchronized to the changed artifact, the second
source artifact, or another artifact).

If it is determined that 612 that at least one referenced
target artifact is missing, then method 600 proceeds to 614.
However, it is determined that 612 that no referenced target
artifacts are missing, then method 600 proceeds to 618.

At 618, the repository synchronizer 126 updates a target
field to reflect the relationship. In particular, an attribute field
associated with the first target artifact can be created,
updated, deleted, or otherwise adjusted to describe a second
relationship between the first target artifact and the second
target artifact that is synchronized with respect to the first
relationship described by the unprocessed relationship field.
The second relationship is of a second relationship type
(e.g., as indicated by a scheme mapping guide). Alterna-
tively or additionally, an attribute field associated with the
second target artifact can be adjusted to describe the second
relationship. In such fashion, the second relationship is
synchronized to the first relationship.

At 620, the repository synchronizer 126 marks the rela-
tionship field as processed. After 620, method 600 returns to
604 and again scans the artifact for unprocessed relationship
fields.

Returning to 612 of FIG. 6A, if it is determined at 612 that
one or more referenced target artifacts are missing, then
method 600 proceeds to 614.

At 614, the repository synchronizer 126 marks the
changed artifact as pending. For example, a flag or other data
item of the artifact may be set (e.g., adjusted to a certain
value) to indicate that the artifact is pending. The flag may
be a data item held within the repository synchronization
device 120 or may be persisted to the artifact in its respective
repository (e.g., via use of a corresponding API).

At 616, the repository synchronizer 126 determines
whether any of the missing referenced target artifacts are
required. For example, a referenced target artifact is required
if another artifact and/or the second relationship cannot exist
without the referenced target artifact. As one example, in
some implementations, a parent artifact must exist prior to
a “child-of” relationship being established at a given artifact.
In other words, the child’s reference to the parent requires
that the parent artifact exist.

If it is determined at 616 that no missing referenced target
artifacts are required, then method 600 returns to 604 and
again scans the artifact for unprocessed relationship fields.
However, if it is determined at 616 that at least one missing
referenced target artifact is required, then method 600 pro-
ceeds to 638 of FIG. 6C.

Returning to 608 of FIG. 6A, if it is determined at 608 that
the synchronization to be performed is not an internal-to-
internal synchronization, then method 600 proceeds to 622
of FIG. 6B.

Referring now to FIG. 6B, at 622, the repository synchro-
nizer 126 determines whether the synchronization to be
performed with respect to the unprocessed relationship field
is an internal-to-external synchronization. For example, the
repository synchronizer 126 can analyze an obtained schema
mapping guide to determine whether the synchronization to
be performed with respect to the unprocessed relationship
field is an internal-to-external synchronization.

10

15

20

25

30

35

40

45

50

55

60

65

20

If it is determined at 622 that the synchronization to be
performed is not an internal-to-external synchronization,
then method 600 proceeds to 626. However, if it is deter-
mined at 622 that the synchronization to be performed is an
internal-to-external synchronization, then method 600 pro-
ceeds to 624.

At 624, the repository synchronizer 126 resolves the
relationship into a first resource locator. For example, the
first resource locator can describe the location of the second
target artifact. Resolving the relationship into the first
resource locator at 624 can include generating the first
resource locator. In some implementations, the first resource
locator is a user-selectable URL that provides access to the
location of the second target artifact. For example, a user
computing device that executes the URL may be directed to
an interface of a software development tool associated with
the repository in which the second target artifact is stored.

At 626, the repository synchronizer 126 queries the first
target artifact to determine whether the first resource locator
already exists at the first target artifact. For example, the
attribute fields of the first target artifact can be scanned to
determine the existence or non-existence of the first resource
locator within the data structure of the first target artifact.

At 628, the repository synchronizer 126 merges the first
resource locator into the first target artifact if it does not
already exist at the first target artifact. For example, the first
resource locator can be stored in or otherwise populate an
attribute field associated with the first target artifact. In
particular, in some implementations, the first resource loca-
tor can populate a particular attribute field associated with a
particular relationship type indicated by an associated
schema mapping guide.

At 630, the repository synchronizer 126 marks the rela-
tionship field as processed. After 630, method 600 returns to
604 and again scans the artifact for unprocessed relationship
fields.

Returning to 606 of FIG. 6A, if it is determined at 606 that
no unprocessed relationship fields were found, then method
600 proceeds to 632 of FIG. 6C.

Referring now to FIG. 6C, at 632 the non-relationship
fields are processed. For example changes to other attribute
fields for attributes such as title, type, or other attributes can
be scanned, recognized, and queued for processing.

At 634, the repository synchronizer 126 synchronizes the
non-relationship fields of a first target artifact that corre-
sponds to the changed artifact to reflect the non-relationship
attribute changes processed at 632. For example, the attri-
bute fields of the first target artifact that correspond to title,
type, or other attributes of the first target artifact can be
edited in accordance with a schema mapping guide or other
synchronization guide.

At 636, the repository synchronizer 126 determines
whether the artifact is marked as pending. For example, a
flag or other data item can be read to determine whether the
artifact is currently marked as pending.

If it is determined at 636 that the artifact is not marked as
pending, then method 600 terminates, for example until
invoked again. However, if it is determined at 636 that the
artifact is marked as pending, then method 600 proceeds to
638. It should be noted that a determination at 616 of FIG.
6A that one or more missing referenced target artifacts are
required will result in method 600 proceeding to 638 of FIG.
6C.

Referring still to FIG. 6C, method 600 pauses at 638 until
the referenced target artifacts exist. For example, the reposi-
tory synchronizer 126 may perform, sequentially or in
parallel, additional methods or routines to generate missing

US 9,459,839 B2

21

artifacts in certain repositories. Thus, if a referenced target
artifact is missing, then at 638 the method 600 pauses until
such additional method or routine generates the missing
artifact(s). Likewise, if a changed artifact is marked as
pending, such may indicate that a relationship of the
changed artifact may have yet to be fully synchronized on
the basis of one or more missing referenced target artifacts.
Therefore, pausing at 638 allows for such referenced target
artifacts to come into existence prior to successive iterations
of the artifact relationship synchronization process.

At 640, the repository synchronizer 126 removes the
pending mark from the artifact. After 640, method 600
returns to 604 and again scans the artifact for unprocessed
relationship fields.

FIGS. 7A and 7B are block diagrams respectively show-
ing artifacts before and after an internal-to-internal synchro-
nization, according to at least one illustrated embodiment. In
particular, FIG. 7A shows Repository A 7002 and Repository
B 7004 prior to an internal-to-internal synchronization while
FIG. 7B shows Repository A 7002 and Repository B 7004
after the internal-to-internal synchronization.

Referring first to FIG. 7A, Repository A 7002 stores
Artifact A1 7010 and Artifact A2 7020.

Artifact A1 7010 includes an identifier field 7012 (popu-
lated with identifier “A1”), an artifact type field 7014
(populated with artifact type “requirement”), and a relation-
ship field 7016 that is null. Likewise, Artifact A2 7020
includes an identifier field 7022 (populated with identifier
“A2”), an artifact type field 7024 (populated with artifact
type “requirement”), and a relationship field 7026 that is
populated with data that indicates Artifact A1 7010 is the
father of Artifact A2 7020. As discussed above with respect
to FIG. 2, the data structure for each artifact can include
multiple relationship fields that respectively correspond to
different available relationship types. However, a single
relationship field is depicted for each artifact in FIG. 7A and
the Figures that follow for ease of presentation and under-
standing.

Referring again to FIG. 7A, the relationship field 7026 of
Artifact A2 has recently been changed to reflect a newly
established “father” relationship with respect to Artifact Al.
Therefore, such relationship field change has not yet been
synchronized to Repository B 7004.

Repository B 7004 stores Artifact B1 7040 and Artifact
B2 7050. In particular, Artifacts B1 7040 and B2 7050 have
previously been respectively mapped to Artifacts A1 7010
and A2 7020.

Artifact B1 7040 includes an identifier field 7042 (popu-
lated with identifier “B1”), an artifact type field 7044
(populated with artifact type “feature”), and a relationship
field 7046 that is null. Likewise, Artifact B2 7050 includes
an identifier field 7052 (populated with identifier “B2”), an
artifact type field 7054 (populated with artifact type “user
story”), and a relationship field 7056 that is null, as shown
in FIG. 7A.

FIGS. 7A and 7B will now be discussed with reference to
method 600 of FIGS. 6A-6C to illustrate one example of an
internal-to-internal synchronization.

Referring to FIG. 6A, at 602, the repository synchronizer
126 receives the changed Artifact A2 7020. At 604, the
repository synchronizer 126 scans Artifact A2 7020 to
identify as unprocessed the relationship field 7026. At 606,
the repository synchronizer 126 determines that the unpro-
cessed relationship field 7026 has been found.

At 608, the repository synchronizer 126 determines that
an internal-to-internal relationship synchronization is to be
performed. For example, at 608 a schema mapping guide

10

15

20

25

30

35

40

45

50

55

60

65

22

associated with Repositories A 7002 and B 7004 can be
obtained. The schema mapping guide may indicate that an
internal “father” relationship within Repository A 7002
maps to an internal “parent” relationship within Repository
B 7004. Therefore, method 600 will proceed to 610.

In some implementations, the schema mapping guide may
also provide additional information that maps particular
artifact types to other artifact types given the existence of
certain relationship. For example, the schema mapping
guide may indicate that a “requirement” type artifact within
Repository A 7002 that has an existing “father” relationship
maps to an “user story” type artifact within Repository B
7004 Thus, the schema mapping guide may provide map-
pings based on some combination of relationship type and/or
artifact type.

At 610, the repository synchronizer 126 resolves the
relationship into the identities of the target artifacts. For
example, the previous respective mappings between Arti-
facts A1 7010 and B1 7040 and A2 7020 and B2 7050 may
be identified at 610.

At 612, the repository synchronizer 126 determines that
neither Artifact B1 7040 nor Artifact B2 7050 are missing,
as Artifact B1 7040 and Artifact B2 7050 presently exist
within Repository B 7004.

At 618, the repository synchronizer 126 updates the target
field to reflect to synchronized relationship. In particular,
referring now to FIG. 7B it can be seen that the relationship
field 7056 of Artifact B2 has been changed to store data that
indicates that the Artifact B1 7040 is the parent of Artifact
B2 7050. Thus, the change in the relationship status of
Artifact A2 7020 has been synchronized over to Artifact B2
7050, with the corresponding relationship types being
directed by the schema mapping guide.

Referring again to FIG. 6A, the relationship field 7026 of
Artifact A2 7020 is marked as processed at 620. After 620,
method 600 returns to 604.

FIGS. 8A and 8B are block diagrams respectively show-
ing artifacts before and after an internal-to-external synchro-
nization, according to at least one illustrated embodiment. In
particular, FIG. 8 A shows Repository A 8002 and Repository
B 8004 prior to an internal-to-external synchronization
while FIG. 8B shows Repository A 8002 and Repository B
8004 after the internal-to-external synchronization.

Referring first to FIG. 8A, Repository A 8002 stores
Artifact A1 8010 and Artifact A2 8020.

Artifact A1 8010 includes an identifier field 8012 (popu-
lated with identifier “A1”), an artifact type field 8014
(populated with artifact type “requirement”), and a relation-
ship field 8016 that stores data that indicates that Artifact Al
8010 is “tested-by” Artifact A2 8020. Likewise, Artifact A2
8020 includes an identifier field 8022 (populated with iden-
tifier “A2”), an artifact type field 8024 (populated with
artifact type “test”), and a relationship field 8026 that is null.
In some implementations, however, relationship field 8026
indicates that Artifact A2 8020 tests Artifact A1 8010.

The relationship field 8016 of Artifact A 8010 has recently
been changed to reflect a newly established “tested-by”
relationship with respect to Artifact A2 8020. Therefore,
such relationship field change has not yet been synchronized
to Repository B 8004.

Repository B 8004 stores Artifact B1 8030. In particular,
Artifact B1 8030 has previously been respectively mapped
to Artifact A1 8010. Artifact B1 8030 includes an identifier
field 8032 (populated with identifier “B1”), an artifact type
field 8032 (populated with artifact type “feature”), and a
relationship field 8036 that is null.

US 9,459,839 B2

23

FIGS. 8A and 8B will now be discussed with reference to
method 600 of FIGS. 6A-6C to illustrate one example of an
internal-to-external synchronization.

Referring to FIG. 6A, at 602, the repository synchronizer
126 receives the changed Artifact A1 8010. At 604, the
repository synchronizer 126 scans Artifact A1 8010 to
identify as unprocessed the relationship field 8016. At 606,
the repository synchronizer 126 determines that the unpro-
cessed relationship field 8016 has been found.

At 608, the repository synchronizer 126 determines that
the synchronization to be performed is not an internal-to-
internal synchronization. For example, at 608 a schema
mapping guide associated with Repositories A 8002 and B
8004 can be obtained. The schema mapping guide may
indicate that an internal “tested-by” relationship within
Repository A 8002 does not map to an internal relationship
within Repository B 8004. Therefore, method 600 will
proceed to 622 of FIG. 6B.

Referring now to FIG. 6B, at 622, the repository synchro-
nizer 126 determines that an internal-to-external relationship
synchronization is to be performed. For example, the
schema mapping guide associated with Repositories A 8002
and B 8004 may indicate that an internal “tested-by” rela-
tionship within Repository A 8002 maps to an external
“tested-by” relationship within Repository B 8004. There-
fore, method 600 will proceed to 624.

At 624, the repository synchronizer 126 turns the rela-
tionship into a resource locator (e.g., a user-selectable URL).
The resource locator describes the location of Artifact A2
8020 within Repository A 8002.

At 626, the repository synchronizer 126 queries the Arti-
fact B1 8030 to determine whether a resource locator to
Artifact A2 8020 already exists within the data structure of
Artifact B1 8030. Because the relationship field 8036 of
Artifact B1 8030 is null, no resource locator is found at 626.
More precisely, because a “tests” relationship field within
Artifact B1 8030 (represented here as relationship field
8036) is null, no existing resource locator to Artifact A2
8020 is found at 626.

At 628, the repository synchronizer 126 merges the
resource locator into the relationship field 8036. In particu-
lar, as shown in FIG. 8B, the relationship field 8036 now
includes data that indicates that the Artifact B1 8030 is
“tested-by” Artifact A2 8020 and includes the resource
locator. Thus, the change in the relationship status of Artifact
A1 8010 has been synchronized over to Artifact B1 8030,
with the corresponding relationship types being directed by
the schema mapping guide.

The repository synchronizer 126 marks relationship field
8016 of Artifact A1 8010 as processed at 630. After 620,
method 600 returns to 604 of FIG. 6A.

FIGS. 9A and 9B are block diagrams respectively show-
ing artifacts before and after an external-to-external syn-
chronization, according to at least one illustrated embodi-
ment. In particular, FIG. 9A shows Repository A 9002,
Repository C 9004, and Repository B 9006 prior to an
external-to-external synchronization while FIG. 9B shows
Repository A 9002, Repository C 9004, and Repository B
9006 after the external-to-external synchronization.

Referring first to FIG. 9A, Repository A 9002 stores
Artifact A1 9010. Repository C stores Artifact C1 9020.

Artifact A1 9010 includes an identifier field 9012 (popu-
lated with identifier “A1”), an artifact type field 9014
(populated with artifact type “work item”), and a relation-
ship field 9016 that stores data that indicates that Artifact Al
9010 is “tested-by” Artifact C1 9020. In particular, the

10

20

40

45

60

24

relationship field 9016 includes a resource locator that
provides access to the location of Artifact C1 9020 within
Repository C 9004.

Likewise, Artifact C1 9020 includes an identifier field
9022 (populated with identifier “C1”), an artifact type field
9024 (populated with artifact type “test”), and a relationship
field 9026 that is null. In some implementations, however,
relationship field 9026 indicates that Artifact C1 9020 tests
Artifact A1 9010.

The relationship field 9016 of Artifact A 9010 has recently
been changed to reflect a newly established “tested-by”
relationship with respect to Artifact C1 9020. Therefore,
such relationship field change has not yet been synchronized
to Repository B 9006.

Repository B 9006 stores Artifact B1 9030. In particular,
Artifact B1 9030 has previously been respectively mapped
to Artifact A1 9010. Artifact B1 9030 includes an identifier
field 9032 (populated with identifier “B1”), an artifact type
field 9032 (populated with artifact type “issue”), and a
relationship field 9036 that is null.

FIGS. 9A and 9B will now be discussed with reference to
method 600 of FIGS. 6A-6C to illustrate one example of an
external-to-external synchronization.

Referring to FIG. 6A, at 602, the repository synchronizer
126 receives the changed Artifact A1 9010. At 604, the
repository synchronizer 126 scans Artifact A1 9010 to
identify as unprocessed the relationship field 9016. At 606,
the repository synchronizer 126 determines that the unpro-
cessed relationship field 9016 has been found.

At 608, the repository synchronizer 126 determines that
the synchronization to be performed is not an internal-to-
internal synchronization. For example, at 608 a schema
mapping guide associated with Repositories A 9002 and B
9006 can be obtained. Alternatively, it may be discerned
from the external nature of relationship field 9016 itself that
the synchronization is not an internal-to-internal synchroni-
zation. Therefore, method 600 proceeds to 622 of FIG. 6B.

Referring now to FIG. 6B, at 622, the repository synchro-
nizer 126 determines that an external-to-external relation-
ship synchronization is to be performed. For example, the
schema mapping guide associated with Repositories A 9002
and B 9006 may indicate that an external “tested-by”
relationship of an artifact of Repository A 9002 maps to an
external “tested-by” relationship for an artifact of Reposi-
tory B 9006. Therefore, method 600 will proceed to 626.

At 626, the repository synchronizer 126 queries the Arti-
fact B1 9030 to determine whether a resource locator to
Artifact C1 9020 already exists within the data structure of
Artifact B1 9030. Because the relationship field 9036 of
Artifact B1 9030 is null, no resource locator is found at 626.

At 629, the repository synchronizer 126 merges the
resource locator into the relationship field 9036. In particu-
lar, as shown in FIG. 9B, the relationship field 9036 now
includes data that indicates that the Artifact B1 9030 is
“tested-by” Artifact C1 9020 and includes the resource
locator. In some implementations, the resource locator can
be copied from the relationship field 9016 of Artifact Al
9010 to the relationship field 9036 of Artifact B1 9030.
Thus, the change in the relationship status of Artifact Al
9010 has been synchronized over to Artifact B1 9030, with
the corresponding relationship types being directed by the
schema mapping guide.

At 630, the repository synchronizer 126 marks the rela-
tionship field 9016 of Artifact A1 9010 as processed. After
630, method 600 returns to 604 of FIG. 6A.

The various embodiments described above can be com-
bined to provide further embodiments. The methods or

US 9,459,839 B2

25

algorithms set out herein may employ additional acts, may
omit some acts, and/or may execute acts in a different order
than specified.

These and other changes can be made to the embodiments
in light of the above-detailed description. In general, in the
following claims, the terms used should not be construed to
limit the claims to the specific embodiments disclosed in the
specification and the claims, but should be construed to
include all possible embodiments along with the full scope
of equivalents to which such claims are entitled. Accord-
ingly, the claims are not limited by the disclosure.

What is claimed is:

1. A method of operation in a repository synchronizer to
synchronize artifact relationships across a plurality of
repositories, the repositories respectively associated with
respective ones of a plurality of software development tools,
the repository synchronizer comprising at least one proces-
sor and at least one non-transitory processor-readable
medium communicatively coupled to the at least one pro-
cessor and which stores at least one of processor-executable
instructions or data, the method comprising:

for a first source artifact in a first repository associated

with a first development tool, the first source artifact

which is logically associated by a defined first relation-

ship of a first relationship type with a second source

artifact;

identifying, autonomously by the repository synchro-
nizer, a first target artifact in a second repository that
corresponds to the first source artifact, the second
repository associated with a second development
tool, the second development tool different from the
first development tool;

determining, autonomously by the repository synchro-
nizer, a defined second relationship type for a second
relationship between the first target artifact in the
second repository that corresponds to the first source
artifact in the first repository and a second target
artifact that corresponds to the second source artifact
based at least in part on a schema mapping guide that
provides a relationship mapping from the first rela-
tionship type in the first repository to the defined
second relationship type in the second repository, the
determined defined second relationship type from a
second set of defined relationship types for the
second repository which is different from a first set
of defined relationship types for the first repository;
and

causing, autonomously by the repository synchronizer,
the second relationship between the first target arti-
fact and the second target artifact to match the
determined defined second relationship type.

2. The method of claim 1 wherein determining the defined
second relationship type based at least in part on a schema
mapping guide that provides a relationship mapping from
the first relationship type in the first repository to the defined
second relationship type in the second repository comprises
determining the defined second relationship type based at
least in part on the schema mapping guide that provides a
user-defined relationship mapping from the first relationship
type in the first repository to the defined second relationship
type in the second repository.

3. The method of claim 1 wherein causing the second
relationship between the first target artifact and the second
target artifact to match the determined defined second rela-
tionship type comprises establishing the second relationship
of the determined defined second relationship type between
the first target artifact and the second target artifact.

25

40

45

55

60

65

26

4. The method of claim 1 wherein causing the second
relationship between the first target artifact and the second
target artifact to match the determined defined second rela-
tionship type comprises changing the second relationship
between the first target artifact and the second target artifact
to the determined defined second relationship type from a
third relationship type.

5. The method of claim 1 wherein causing the second
relationship between the first target artifact and the second
target artifact to match the determined defined second rela-
tionship type comprises determining that the second rela-
tionship exists between the first target artifact and the second
target artifact as the determined defined second relationship
type and leaving the second relationship between the first
target artifact and the second target artifact as the determined
defined second relationship type.

6. The method of claim 1, further comprising, prior to
identifying the first target artifact in the second repository
that corresponds to the first source artifact:

receiving an indication of an alteration of one or more

data fields associated with the first source artifact; and
scanning the data fields of the first source artifact to
identify as unprocessed the defined first relationship.
7. The method of claim 1 wherein identifying the first
target artifact in the second repository that corresponds to
the first source artifact comprises identifying, periodically
and not responsive to human prompting, the first target
artifact in the second repository that corresponds to the first
source artifact, determining the defined second relationship
type for the second relationship comprises determining,
periodically and not responsive to human prompting, the
defined second relationship type for the second relationship,
and causing the second relationship between the first target
artifact and the second target artifact to match the deter-
mined defined second relationship type comprises causing,
periodically and not responsive to human prompting, the
second relationship between the first target artifact and the
second target artifact to match the determined defined sec-
ond relationship type.
8. The method of claim 1 wherein each of the first source
artifact, the second source artifact, the first target artifact,
and the second target artifact comprise one of a task, a goal,
a user story, an epic, a defect, a requirement, an issue, a
folder, a changeset, or a test.
9. The method of claim 1 wherein determining a defined
second relationship type for a second relationship between
the first target artifact in the second repository that corre-
sponds to the first source artifact in the first repository and
a second target artifact that corresponds to the second source
artifact comprises:
determining whether the first relationship between the
first source artifact and the second source artifact is an
internal relationship within the first repository;

responsive to determining that the first relationship is an
internal relationship within the first repository, deter-
mining whether the second relationship between the
first target artifact and the second target artifact is to be
an internal relationship within the second repository;
and

responsive to determining that the second relationship is

to be an internal relationship within the second reposi-
tory, determining whether the second target artifact
exists within the second repository.

10. The method of claim 9 wherein determining a defined
second relationship type for a second relationship between
the first target artifact in the second repository that corre-
sponds to the first source artifact in the first repository and

US 9,459,839 B2

27

a second target artifact that corresponds to the second source
artifact further comprises marking one or more of the first
source artifact, the defined first relationship, and the second
target artifact as pending in response to determining that the
second target artifact does not exist within the second
repository.
11. The method of claim 1 wherein determining a defined
second relationship type for a second relationship between
the first target artifact in the second repository that corre-
sponds to the first source artifact in the first repository and
a second target artifact that corresponds to the second source
artifact comprises:
determining whether the first relationship between the
first source artifact and the second source artifact is an
internal relationship within the first repository;

responsive to determining that the first relationship is an
internal relationship within the first repository, deter-
mining whether the second relationship between the
first target artifact and the second target artifact is to be
an internal relationship within the second repository;
and

responsive to determining that the second relationship is

not to be an internal relationship within the second
repository, generating a resource locator that describes
a location of the second target artifact within the first
repository or a third repository.

12. The method of claim 11 wherein generating a resource
locator that describes a location of the second source artifact
within the first repository or a third repository comprises
generating a user-selectable uniform resource locator (URL)
providing access to the location of the second target artifact
within the first repository or the third repository.

13. The method of claim 11 wherein causing the second
relationship between the first target artifact and the second
target artifact to match the determined defined second rela-
tionship type comprises associating the resource locator that
describes the location of the second target artifact with the
first target artifact as the second relationship.

14. The method of claim 1 wherein determining a defined
second relationship type for a second relationship comprises
determining whether the first relationship between the first
source artifact and the second source artifact is an internal
relationship within the first repository and causing the
second relationship between the first target artifact and the
second target artifact to match the determined defined sec-
ond relationship type comprises, responsive to determining
that the first relationship is not an internal relationship
within the first repository, merging a resource locator that
describes a location of the second source artifact within the
first repository or a third repository with any existing
resource locators associated with existing relationships of
the first target artifact.

15. A system to enable collaborative development of
software products across a plurality of software develop-
ment tools, comprising:

at least a first repository that stores a first plurality of

artifacts associated with a first software development
tool and a second repository that stores a second
plurality of artifacts associated with a second software
development tool that is different from the first soft-
ware development tool; and

a repository synchronizer to synchronize artifact relation-

ships across at least the first and second repositories,
the repository synchronizer comprising at least one
processor and at least one non-transitory processor-
readable medium communicatively coupled to at least
one processor and which stores processor-executable

10

15

20

25

30

35

40

45

50

55

60

65

28

instructions, execution of which causes, for at least a

first source artifact of the first repository that is logi-

cally associated by a defined first relationship of a first

relationship type with a second source artifact, the

repository synchronizer to:

identify a first target artifact in the second repository
that corresponds to the first source artifact;

determine a defined second relationship type for a
second relationship between the first target artifact in
the second repository that corresponds to the first
source artifact in the first repository and a second
target artifact that corresponds to the second source
artifact based at least in part on a schema mapping
guide that provides a relationship mapping between
the first relationship type in the first repository and
the defined second relationship type in the second
repository, the determined defined second relation-
ship type from a second set of defined relationship
types for the second repository which is different
from a first set of defined relationship types for the
first repository; and

cause the second relationship between the first target
artifact and the second target artifact to match the
determined defined second relationship type.

16. The system of claim 15 wherein the relationship
mapping provided by the schema mapping guide is user-
defined.

17. The system of claim 15 wherein the instructions that
cause the repository synchronizer to cause the second rela-
tionship between the first target artifact and the second target
artifact to match the determined defined second relationship
type cause the repository synchronizer to establish the
second relationship of the determined defined second rela-
tionship type between the first target artifact and the second
target artifact.

18. The system of claim 15 wherein the instructions that
cause the repository synchronizer to cause the second rela-
tionship between the first target artifact and the second target
artifact to match the determined defined second relationship
type cause the repository synchronizer to change the second
relationship between the first target artifact and the second
target artifact to the determined defined second relationship
type from a third relationship type.

19. The system of claim 15 wherein the instructions that
cause the repository synchronizer to cause the second rela-
tionship between the first target artifact and the second target
artifact to match the determined defined second relationship
type cause the repository synchronizer to determine that the
second relationship exists between the first target artifact
and the second target artifact as the determined defined
second relationship type and leave the second relationship
between the first target artifact and the second target artifact
as the determined defined second relationship type.

20. The system of claim 15 wherein the instructions cause
the repository synchronizer to autonomously identify the
first target artifact in the second repository, autonomously
determine the defined second relationship type for the sec-
ond relationship, and autonomously cause the second rela-
tionship between the first target artifact and the second target
artifact to match the determined defined second relationship
type.

21. The system of claim 15 wherein the instructions cause
the repository synchronizer to periodically and not respon-
sive to human prompting identify the first target artifact in
the second repository, periodically and not responsive to
human prompting determine the defined second relationship
type for the second relationship, and periodically and not

US 9,459,839 B2

29

responsive to human prompting cause the second relation-
ship between the first target artifact and the second target
artifact to match the determined defined second relationship
type.
22. A method to synchronize artifact relationships across
a plurality of repositories respectively associated with a
plurality of software development tools, the method com-
prising:
receiving, by one or more computing devices, data that
describes a first attribute field associated with a first
source artifact contained in a source repository associ-
ated with a first software development tool of the
plurality of software development tools, the first attri-
bute field that describes a first relationship of a first
relationship type between the first source artifact and at
least a second source artifact;
obtaining, by the one or more computing devices, a
schema mapping guide that describes at least one
relationship mapping between the first relationship type
in the source repository and a second relationship type
in a target repository associated with a second software
development tool of the plurality of software develop-
ment tools, the second software development tool dif-
ferent than the first software development tool; and

updating, by the one or more computing devices based at
least in part on the first attribute field and the schema
mapping guide, a second attribute field associated with
a first target artifact contained in the target repository to
describe a second relationship of the second relation-
ship type between the first target artifact and at least a
second target artifact.

23. The method of claim 22 wherein obtaining, by the one
or more computing devices, the schema mapping guide
comprises obtaining, by the one or more computing devices,
the schema mapping guide that describes at least one user-
defined relationship mapping between the first relationship
type in the source repository and the second relationship
type in the target repository.

15

20

25

30

35

30

24. The method of claim 22 wherein receiving, by the one
or more computing devices, data that describes a first
attribute field associated with a first source artifact com-
prises receiving, by the one or more computing devices, an
indication that a change has occurred in one or more
attribute fields associated with the first source artifact and
scanning, by the one or more computing devices, the one or
more attribute fields to identify as unprocessed a change in
the first attribute field.

25. The method of claim 22, further comprising:

determining, by the one or more computing devices,

whether the second target artifact is included in the
target repository with the first target artifact, wherein
when it is determined that the second target artifact is
not included in the target repository with the first target
artifact, updating, by the one or more computing
devices based at least in part on the first attribute field
and the schema mapping guide, a second attribute field
associated with a first target artifact comprises gener-
ating, by the one or more computing devices, a resource
locator that describes a location of the second target
artifact within the source repository or a third reposi-
tory and associating, by the one or more computing
devices, the resource locator with the first target arti-
fact.

26. The method of claim 22, further comprising:

determining, by the one or more computing devices,

whether the second source artifact is included in the
source repository with the first source artifact, wherein
when it is determined that the second source artifact is
not included in the source repository with the first
source artifact, updating, by the one or more computing
devices based at least in part on the first attribute field
and the schema mapping guide, a second attribute field
associated with a first target artifact comprises associ-
ating, by the one or more computing devices, a resource
locator that describes a location of the second source
artifact with the first target artifact.

#* #* #* #* #*

